國立台東高級中學 一〇四學年度 第一次期中考 三年級自然組數學科試題卷 105.3.21

適用班級 3~1、2、3、4、9 答案卷:是 畫答案卡:否 班級:3~ 姓名:_____座號:____

一、多重選擇題:全對給7分,錯一個給5分,錯兩個給3分,錯三個給1分,錯四個以上不給分,未作答不給分

1.設 $\langle a_n \rangle$, $\langle b_n \rangle$ 為兩無窮數列,下列哪些是正確的?

- (A) 若 $\langle a_n \rangle$ 收斂 $\langle b_n \rangle$ 發散 ,則 $\langle a_n \times b_n \rangle$ 發散。
- (B) 若 $\langle a_n \rangle$ 、 $\langle b_n \rangle$ 皆發散,則 $\langle a_n + b_n \rangle$ 發散。

$$(C)$$
 若 $\langle a_n \rangle$ 、 $\langle b_n \rangle$ 皆收斂,且 $\lim_{n \to \infty} a_n \neq 0$,則 $\left\langle \frac{b_n}{a_n} \right\rangle$ 收斂。

- (D) 若 $\langle a_n \times b_n \rangle$ 收斂,則 $\langle a_n \rangle \cdot \langle b_n \rangle$ 皆收斂。
- (E) 若 $\langle a_n \rangle$ 、 $\langle b_n \rangle$ 皆發散,則 $\left\langle \frac{b_n}{a_n} \right\rangle$ 發散。
- (F) 若 f(x) 在 x = a 的一階 導數 f'(a) 不存在,則 f(x) 在 x = a 不連續。
- (G) 設 $f(x) = \sqrt{x}$,若有一實數 k 滿足 f(a) < k < f(b),則由中間值定理,必有一數 c 滿足 a < c < b 且 f(c) = k。

二、填充題:共93分,配分如下表

2	答對格數	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	得分	8	16	24	30	36	42	47	52	56	60	64	68	72	76	80	83	86	89	91	93

1.試求下列各式的極限值(若極限不存在,則以「不存在」作答):

(1)
$$\lim_{n\to\infty} \frac{3n+4}{n-2} =$$

(2)
$$\lim_{n\to\infty} \frac{7^{n+2} + 8^{n+1}}{2^{3n} + 5^{n+1}} = \underline{\hspace{1cm}}$$

(3)
$$\lim_{n\to\infty} \frac{3^n - 4^n + 6}{4^n} = \underline{\hspace{1cm}}$$

(4)
$$\sum_{k=1}^{\infty} \left(-\frac{4}{5}\right)^k = \underline{\hspace{1cm}}$$

(5)
$$\lim_{x \to 1} \frac{\sqrt{x} - \sqrt{2}}{x - 2} = \underline{\hspace{1cm}}$$

(6)
$$\lim_{x \to 3} \frac{\sqrt{x} - 3}{\sqrt{x + 6} - 9} = \underline{\hspace{1cm}}$$

(7)
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x^2 - 16} = \underline{\hspace{1cm}}$$

(8)
$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1} = \underline{\hspace{1cm}}$$

(9)
$$\lim_{x\to 3} \left(\frac{1}{x-3} + \frac{x-9}{x^2-9} \right) = \underline{\hspace{1cm}}$$

(10)
$$\lim_{n\to\infty} \frac{6+11+16+\cdots+(5n+1)}{n^2} = \underline{\hspace{1cm}}$$

(11)
$$\lim_{x \to \frac{1}{2}} \frac{[x]-1}{|2x+1|} =$$
 ([x]為高斯函數)

2.設
$$f(x) = 3x^2 + x$$
 , $g(x) = x + 5$, 則 $(f \circ g)(x) =$ _____

4.設
$$f(x) = \frac{(x+1)(x+2)(x-1)}{(x-2)(x+3)(x+4)}$$
 , 求一階導數 $f'(1) =$ ______

5.設
$$f(x) = \sqrt[3]{(3x+5)^4}$$
 , 求一階導數 $f'(1) =$ ______

6.設
$$f(x) = (x^3 + 2x^2 - x - 4)(x^4 + 2x^3 - 3x + 5)$$
,求一階導數 $f'(0) =$ ______

7.求在函數
$$f(x) = (x^2 - x - 1)^5$$
 的圖形上,以 $P(2,1)$ 為切點的切線方程式_____

8.在函數
$$f(x) = x^2 + 3x + 5$$
 的圖形上,以點 P 為切點的切線斜率為 7 ,求 P 點坐標______

9.已知
$$P(3,0)$$
為函數 $f(x)=2x^2-x-7$ 圖形外一點,求過 P 且與 $f(x)$ 相切的直線方程式____(兩解)

10.設
$$f(x) = |2x^2 - 5x - 4|$$
,求一階導數 $f'(3) =$ ______

國立台東高級中學 一〇四學年度 第一次期中考 三年級自然組數學科答案卷 105.3.21

適用班級 3~1、2、3、4、9 答案卷:是 畫答案卡:否 班級:3~ 姓名:_____座號:____

※注意題號,小心填答

一、多重選擇題:全對給7分,錯一個給5分,錯兩個給3分,錯三個給1分,錯四個以上不給分,未作答不給分

1.	
C G	

二、填充題:共93分,配分如下表

答對格數	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
得分	8	16	24	30	36	42	47	52	56	60	64	68	72	76	80	83	86	89	91	93

1.(1)	1.(2)	1.(3)	1.(4)	1.(5)
3	8	-1	$-\frac{4}{9}$	$\sqrt{2}-1$
1.(6)	1.(7)	1.(8)	1.(9)	1.(10)
$-\frac{\sqrt{3}-3}{6}$	$\frac{1}{32}$	$\frac{3}{2}$	$\frac{1}{3}$	$\frac{5}{2}$
1.(11)	2.	3.	4.	5.
$-\frac{1}{2}$	$3x^2 + 31x + 80$	$\frac{3}{2}$	$-\frac{3}{10}$	8
6.	7.	8.	9.	10.
7	15x - y - 29 = 0	(2,15)	3x - y - 9 = 0 $19x - y - 57 = 0$	-7