國立臺東高級中學 113 學年度第一學期第一次期中考試 高二化學科試題科目名稱:選修化學(一) 適用班級:201、202、203、208 作答方式:答案卡+答案卷

一、單選題:每題2分,共44分。

- ()1. 人體血紅蛋白中含有 Fe²⁺,如果誤食亞硝酸鹽會使人中毒,因為亞硝酸鹽會使 Fe²⁺ 轉變成 Fe³⁺,生成變性血紅素而喪失與 O₂結合的能力,服用維生素 C 可以緩解亞硝酸鹽的中毒,這說明維生素 C 具有何種性質? (A)還原性 (B)氧化性 (C)鹼性 (D)酸性 (E)中性。
- ()2. 下列關於氯的氧化數,何者錯誤? (A)KClO₄:+7 (B)ClO₂:+3 (C)Cl₂:0 (D)HClO:+1。
- ()3. 下列各元素的氧化數,何者<u>不存在</u>? (A)氧的氧化數為 $-\frac{1}{2}$ (B)氟的氧化數+1 (C)Na的氧化數為0 (D)氯的氧化數為+7。
- ()4. 下列關於各元素氧化數的敘述,何者正確?
 - (A) NaCl、Na₂O₂、NaO₂中,Na之氧化數均為+1
 - (B) Na₂S₂O₃、Na₂SO₄、H₂S中,S之氧化數均為-2
 - (C) KH、HCl、H2O中, H之氧化數均為+1
 - (D) KMnO₄、OF₂、H₂O₂中,O之氧化數均為-2
 - (E) HF、OF2、O2F2中,F之氧化數有正有負。
- ()5. 下列有關氧化數的敘述,何者<u>錯誤</u>? (A)對每一個原子而言,氧化數必為整數,但原子的平均氧化數可能為小數 (B)元素發生還原反應時,氧化數會減少 (C)金屬的氧化數為正值,而非金屬的氧化數為負值 (D)元素失去電子時,氧化數會增加。
- ()6. 在碘的自身氧化還原反應 $I_2 + OH^- \to I^- + IO_3^- + H_2O$ (未平衡)中,約有多少比率的 I_2 進行還原反應? (A) $\frac{1}{6}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\frac{2}{3}$ (E) $\frac{5}{6}$ °
- ()7. 下列哪一項變化,需要氧化劑參與才能發生? (A) $Br_2 \rightarrow Br^-$ (B) $H_2O_2 \rightarrow H_2O$ (C) $CO_2 \rightarrow CO_3^{2-}$ (D) $H_2S \rightarrow S$ (E) $AlCl_3 \rightarrow Al(OH)_3$ 。
- ()8. 有一氧化還原反應: $a H_2O_{2(aq)} + b MnO_4^-(aq) + c H^+(aq) \rightarrow d O_{2(g)} + e Mn^{2+}(aq) + f$ $H_2O_{(aq)}$,其中 $a \cdot b \cdot c \cdot d \cdot e \cdot f$ 為平衡方程式之係數,則a + b + c + d + e + f的和為多少?(各係數為最簡單整數比) (A)20 (B)24 (C)28 (D)32。
- ()9. 反應 Cu+HNO₃→Cu(NO₃)₂+H₂O+NO 中,若有 3 莫耳 Cu 被溶掉,則需消耗硝酸若干莫耳? (A)2 (B)4 (C)6 (D)8 (E)10。
- ()10. 化學反應中所謂的限量試劑,指的是下列何者?
 - (A)反應時,消耗質量最多的反應物 (B)反應初,質量最少的反應物 (C)反應時,最先被耗盡的反應物 (D)分子量最小的反應物 (E)反應初,莫耳數最少的反應物。
- ()11. 丙烷和丁烷的混合氣體完全燃燒後,得3.74克CO₂及1.98克H₂O,則原混合氣體中,丙烷、丁烷的莫耳數比為若干? (A)1:1 (B)1:3 (C)3:2 (D)2:3 (E)3:1。
- ()12. 科學上有「能量守恆」的原理,環境議題上常聽到「能源危機」的議題,下列哪一種觀念才是正確的? (A)「能量守恆」表示總能量不會減少,故能量是用不完的。所以「能源危機」只是勸人節省的口號而已 (B)「能量守恆」只有在特殊情況下才成立,一般來說,能量愈用愈少,總有用完之時,故有「能源危機」 (C)能量在使用中相互轉換,其總值會守恆,故沒有「能源危機」 (D)「能量守恆」總是成立的,但是被用來發電的煤或汽、機車使用的汽油,用過之後變成廢氣和熱能,通常無法再使用,故有「能源危機」 (E)兩者沒有關係。
- ()13. 下列哪一種是屬於光能轉變為化學能的情況?
 - (A)太陽能發電 (B)通電流的電燈 (C)植物的光合作用 (D)鉛蓄電池充電時 (E)蠟燭的燃燒。
- ()14. 下列有關反應熱的敘述,何者正確? (A)標準反應熱是指在0 ℃、1 atm下所測得的反應熱,可記為ΔH° (B)二氧化碳的莫耳生成熱與石墨的莫耳燃燒熱數值相同,符號相反 (C)反應熱的大小與反應物的莫耳數數量無關,但與反應途徑有關 (D)氫氣的莫耳燃燒熱即為水的莫耳生成熱
 - (E)可藉由實驗求出單一物質的熱含量。
 -)15. 反應熱與下列何者無關? (A)濃度 (B)壓力 (C)物質狀態 (D)反應過程 (E)溫度。
- ()16. 已知2 $H_2(g) + O_2(g) \rightarrow 2H_2O(g)$ $\Delta H = -240.0 \text{ kJ}$,下列敘述何者正確? (A) $H_2O(g)$ 的莫耳生成熱為240.0 kJ (B)生成物所含的能量總和比反應物多 (C)1克的氫完全燃燒,可放熱120 kJ (D)若生成物為 $H_2O(l)$,則放熱大於240 kJ。
- ()17. 強酸與強鹼滴定生成 1 莫耳水時,約放出 56.0 千焦的熱,則將 0.01 M 硫酸 1 升與 0.01 M 氫氧化鈉 2升混合,放熱約為若干千焦? (A)0.56 (B)1.12 (C)2.24 (D)3.36。

- ()18.25℃、1 atm下進行下列反應,何者反應式的反應熱為標準莫耳燃燒熱?
 - $(A) C(s) + \frac{1}{2} O_2(g) \rightarrow CO(g) , \Delta H^{\circ} = -110.5 \text{ kJ}$
 - (B) $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$, $\Delta H^{\circ} = -483.2 \text{ kJ}$
 - $(C)CO(g) + H_2(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$, $\Delta H^{\circ} = -525.0 \text{ kJ}$
 - (D)HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H₂O(l) , $\Delta H^{\circ} = -56 \text{ kJ}$
 - (E) $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(1)$, $\Delta H^{\circ} = -1420 \text{ kJ}$
- ()19. 下列有關反應熱的敘述,何者正確?
 - (A)H₂(g)的莫耳燃燒熱與H₂O(I)的莫耳生成熱同值異號
 - (B)石墨的莫耳生成熱為零
 - $(C)C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$, $\Delta H^\circ = -110 \text{ kJ}$ 為C(s)的莫耳燃燒熱
 - $(D)CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$,該反應之反應熱可稱為 CO_2 的莫耳生成熱
 - $(E)C(s)+O_2(g)\to CO_2(g)$,該反應之反應熱可稱為C(s)的莫耳燃燒熱,但不能稱為 $CO_2(g)$ 的莫耳生成熱。
- ()20. C₂H₅OH(l)、C(s)、H₂(g)之燃燒熱分別為−329、−95、−67 kcal/mol,則C₂H₅OH(l)之莫耳生成熱為何? (A)−167 (B)−62 (C)62 (D)167 (E)−329。
- ()21. 在STP時,將5600 mL乙炔完全燃燒,測得放出的熱量為325 kJ,試求乙炔的莫耳燃燒熱為若干kJ? (A)560 (B)650 (C)1300 (D)1860 (E)280。
- ()22. 在標準狀況下,已知CO₂之標準莫耳生成熱為-393.6 kJ,且已知:

 $3C(s) + 2Fe_2O_3(s) \rightarrow 4Fe(s) + 3CO_2(g)$, $\Delta H^{\circ} = 463.6kJ$

試問Fe₂O₃之標準莫耳生成熱應為多少?

(A)70 kJ (B)–70 kJ (C)–822.2 kJ (D)–857.2 kJ (E)–1644.4 kJ \circ

二、多重選擇題:每題4分,共32分,採倒扣計分。

- ()23. 為了暸解氧化還原反應,化學家提出「氧化數」的概念,下列敘述哪些正確?
 - (A)兩原子形成化學鍵時,對拉電子能力較大者,其氧化數為正值
 - (B)化合物中,原子的氧化數即為其所帶的真實電荷
 - (C)磁鐵礦的化學式為Fe₃O₄,其中三個Fe原子的氧化數皆相同
 - (D)第1族金屬陽離子,其氧化數恆為+1
 - (E)第17族元素的最高氧化數為+7。
- ()24. 有關下列物質氧化數的敘述,哪些正確?
 - (A) NaH 中,氫的氧化數為+1 (B) KClO₃ 中,氯的氧化數為+5 (C) P₄ 的氧化數為 0 (D) H₃PO₃ 中,磷的氧化數為+5 (E) Na₂O₂ 中,氧的氧化數為-1。
- ()25. 若有 12 克氫氣與 80 克氧氣燃燒生成水,則下列敘述中,哪些正確?
 - (A)此反應氫氣為限量試劑 (B)此反應氧氣為限量試劑 (C)反應完成後將剩餘4克氫氣 (D)反應完成後將生成5 莫耳水 (E)過程中用去2.5 莫耳氫氣。
- ()26. 下列哪些為再生能源?
 - (A)原油 (B)煤 (C)風力能 (D)太陽能 (E)海洋能。
- ()27. 下列哪些反應熱的ΔH必為負值? (A)燃燒熱 (B)生成熱 (C)固體之溶解熱 (D)氣體之溶解熱 (E)酸鹼中和熱。
- ()28. 由反應式 $N_{2(g)}+2$ $O_{2(g)} \rightarrow 2$ $NO_{2(g)}$, $\Delta H=67.72$ kJ,可闡明下列哪些事實? (A)反應前後原子不滅
- (B)此反應為放熱反應 (C)此反應為吸熱反應 (D)此反應熱可視為NO_{2(g)} 的莫耳生成熱 (E)此反應熱可視為N_{2(g)} 的莫耳燃燒熱
- ()29. 下列關於反應熱 (ΔH) 的敘述,哪些正確?
 - (A)熱化學反應式之係數乘n倍,反應熱變為n次方倍
 - (B)正反應的反應熱和逆反應的反應熱等值異號
 - (C)反應熱會受溫度及壓力的影響
 - (D)反應熱與反應物的初始與最終狀態有關,與反應進行的過程無關
 - (E)反應熱為負值,表示為放熱反應,該反應必可自然發生。

- ()30. 乙炔氧焰可達3000℃的高溫,常用於金屬焊接與切割,其反應式如下:
 - $2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g)$
 - 若乙炔(C_2H_2)和氧氣皆為 $208\,g$,兩者發生上述反應時,下列哪些選項的敘述是正確的?(原子量 $H=1\cdot C=12\cdot O=16$)
 - (A)C₂H₂為限量試劑
 - (B)O₂為限量試劑
 - (C)二氧化碳的理論產量為229 g
 - (D)若實際上生成密度為1.85 g/L的二氧化碳80 L,則在此溫度和壓力下的產率為32.6%
 - (E)若乙炔可用電石(CaC2)加水反應得到氫氧化鈣與乙炔,則平衡此反應式的最簡係數總和為4。

三、非選題:共24分。

- 31. 硝酸銨(NH_4NO_3) 具高爆炸性,是易溶於水的離子化合物,計算 NH_4NO_3 中兩種氮原子的氧化數。(4分)
- 32. 有關鋁金屬溶於鹽酸的反應: $Al(s) + H^+(aq) \rightarrow Al^{3+}(aq) + H_2(g)$ (未平衡)
 - (1)反應前後,氧化數有變化之物質為何?(2分)
 - (2)利用半反應寫出平衡全反應。(3分)
- 33. 聯胺(N_2H_4)可作為火箭的液態燃料,與四氧化二氮(N_2O_4)反應生成氮氣與水。若 128 克聯胺與 92 克 N_2O_4 完全 反應,試回答下列問題。(原子量:N=14)
 - (1)平衡聯胺與四氧化二氮的化學反應式。(2分)
 - (2)何者為限量試劑?(2分)
 - (3)在0°C,1 atm 下,反應生成的氦氣體積最多為多少公升? (2 分)
- 34. 寫出 $C_3H_7OH(l)$ 的生成反應及燃燒反應的熱化學反應式。(已知 $C_3H_7OH(l)$ 的莫耳生成熱為 35 kJ,莫耳燃燒熱為 -2470 kJ)(6 分)
- 35. 已知葡萄糖($C_6H_{12}O_6$)、乙醇(C_2H_5OH)、二氧化碳(CO_2)的莫耳生成熱分別為 $-1260 \, kJ$ 、 $-277.7 \, kJ$ 、 $-393.5 \, kJ$,若有 90 克的葡萄糖發酵產生酒精與二氧化碳,試問此過程中會放出多少熱?(3 分)

• •	工臺東高級中學 113 學年度第一學期第一次期中考試 高二化學科答案卷目名稱:選修化學(一) 適用班級:201、202、203、208 作答方式:答案卡+答案卷
	擇題答案請寫在答案卡上。
·	選題:共24分。 硝酸銨(NH4NO3)具高爆炸性,是易溶於水的離子化合物,計算 NH4NO3中兩種氮原子的氧化數。(4分)
32.	有關鋁金屬溶於鹽酸的反應: $Al(s) + H^+(aq) \rightarrow Al^{3+}(aq) + H_2(g)$ (未平衡) (1)反應前後,氧化數有變化之物質為何?(2分) (2)利用半反應寫出平衡全反應。(3分)
33.	聯胺(N_2H_4)可作為火箭的液態燃料,與四氧化二氦(N_2O_4)反應生成氦氣與水。若 128 克聯胺與 92 克 N_2O_4 完全反應,試回答下列問題。(原子量: $N=14$)(1)平衡聯胺與四氧化二氦的化學反應式。(2 分)(2)何者為限量試劑?(2 分)(3)在 0° C,1 atm 下,反應生成的氦氣體積最多為多少公升?(2 分)
34.	寫出 $C_3H_7OH(l)$ 的生成反應及燃燒反應的熱化學反應式。(已知 $C_3H_7OH(l)$ 的莫耳生成熱為 $35 kJ$,莫耳燃燒熱為 $-2470 kJ$)($6 \Im$)
35.	已知葡萄糖($C_6H_{12}O_6$)、乙醇(C_2H_5OH)、二氧化碳(CO_2)的莫耳生成熱分別為 $-1260kJ$ 、 $-277.7kJ$ 、 $-393.5kJ$,若有 90 克的葡萄糖發酵產生酒精與二氧化碳,試問此過程中會放出多少熱?(3 分)

答 案

一、單選題:

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.
Α	В	В	A	С	E	D	С	D	С	С
12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.
D	С	D	D	D	В	E	В	В	С	С

二、多選題:

23.	24.	25.	26.
DE	ВСЕ	BD	CDE
27.	28.	29.	30.
ADE	AC	BCD	ВС

三、非選題:

- 31. NH_4NO_3 -3 + 5
- 32. (1) Al(s)及 H⁺(aq) (2) 2Al(s) + 6H⁺(aq)→2Al³⁺ (aq)+ 3H₂(g)
- 33. (1) $2 N_2 H_4 + N_2 O_4 \rightarrow 3 N_2 + 4 H_2 O$ (2) $N_2 O_4$ (3) 67.2 公升
- 34. 生成反應:3C(s)+4H₂(g)+ $\frac{1}{2}$ O₂(g) \rightarrow C₃H₇OH(I), Δ H=35 kJ 燃烧反應:C₃H₇OH(I)+ $\frac{9}{2}$ O₂(g) \rightarrow 3CO₂(g)+4H₂O(I), Δ H=-2470 kJ
- 35. -41.2 kJ